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Abstract

In this dissertation, we develop a model based on random walks on hypergraphs to
represent the thinking process behind recovery from mental illness using self-directed neu-
roplasticity (the ability to harness the power of thought to change the structure of the
brain). We suggest through numerical simulations that our model emulates two key char-
acteristics of successful engagement in self-directed neuroplasticity, namely that recovery
is more successful the better able you are to (1) reappraise, and (2) refocus attention away
from, maladaptive thoughts.

Our work makes novel contributions to the development of hypergraph theory, and may
find broader applications in hypergraph science. Firstly, we introduce a new dynamical
process, an edge-centric random walk on an hypergraph, and find its stationary distribu-
tion. We also define a certain projection of an hypergraph onto its hyperedges, which we
call the contracted network, and show that an edge-centric random walk on an hypergraph
is equivalent to a random walk on the corresponding contracted network. Furthermore,
we introduce a marking process for hypergraphs, and propose a novel mechanism for gen-
erating random hypergraphs based on preferential attachment to hyperedges rather than
nodes.
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1 Introduction

Cognitive behavioural therapy (CBT) is the among the most effective therapeutic treat-
ments for anxiety disorders and depression [1]. Its strength lies in the ability of our mind to
harness the power of thought to change the structure of our brain, known as self-directed
neuroplasticity (SDN) [2, 3]. Successful engagement in SDN requires two processes: (1)
using mindful awareness to recognise maladaptive thoughts and positively reappraise them,
and (2) refocusing attention away from pathological thoughts to ‘disengage from the topic
of distress’ [1, 3]. However, this means the efficacy of CBT falls short for individuals who
lack adequate metacognitive awareness (the ability to ‘think about thinking’) [4].

Research has shown that visual explanations improve understanding of abstract con-
cepts [5], and enhance conceptual understanding more effectively than verbal explanations
alone [6]. This suggests that a visual model conceptualising the thinking process required
for SDN (and hence CBT) may help those with poor metacognitive awareness recover from
anxiety disorders or depression. However, such a model would only be useful if the process
it abstracted emulated the two principles of successful recovery stated above, namely that
recovery is more successful the better an individual is at reappraising their thoughts, and
the better they are at disengaging from maladaptive thoughts [2, 3].

In this dissertation, we develop such a model. We base our model on hypergraphs, given
their ease of visual representation, and define dynamics on hypergraphs to represent the
process of recovery. Our model differs from any model in the literature because attempts
to understand mental illness using mathematics, from biophysical models of the brain [7] to
networks of pathological symptoms [8], have all been motivated by a goal to elucidate key
mechanisms of development and maintenance of disorders, rather than emulate a recovery
process.

The dissertation is structured as follows: in Section 2, we introduce basic definitions
concerning hypergraphs, before introducing our model. In Section 3, we define dynamics
representing thought. This includes the introduction of an edge-centric random walk pro-
cess, a new projection onto the hyperedges of an hypergraph, and a proof of the equivalence
between an edge-centric random walk on an hypergraph and a random walk on its corre-
sponding projected network. In Section 4, we incorporate refocusing into our dynamical
process. Section 5 sees us define (positive) reappraisal via a marking process, which leads us
to the overall dynamical process of recovery. We also explain two measures that quantify the
success of the recovery process. In Section 6, we explore the dynamics through numerical
simulations. This involves presenting a novel process for generating random hypergraphs.
Finally, we conclude with a discussion of our results, evaluation of the limitations of our
model, and a suggestion of possible future directions.
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2 Introducing Hypergraphs

2.1 Basic Definitions

We begin by introducing the basic definitions and notation required to define our model.
The definitions are adapted from [9, 10, 11], and notation adopted mainly from [9, 11].

Definition 1 (Hypergraph). An hypergraph H = (V,E) is defined by a set of n nodes
V = {v1, v2, . . . , vn} and a set of m hyperedges E = {E1, E2, . . . , Em}. Each hyperedge
Eα ∈ E is a non-empty subset of V. The size |Eα| of an hyperedge Eα ∈ E is equal to the
number of nodes it contains. An hypergraph is simple if no hyperedge is a subset of another,
and connected if each hyperedge shares at least one node with another hyperedge.

As remarked in [9], if |Eα| = 2 for all α ∈ {1, . . . ,m}, then the hypergraph reduces to
a standard network. This leads us to think of an hypergraph as a generalisation of a
network, in which each edge has an arbitrary positive number of nodes. Note also that a
simple hypergraph restricts hyperedge sizes to be at least 2.

We can assign weights to the nodes and hyperedges of an hypergraph. In [11], Chitra
and Raphael introduce edge-dependent node weights, whereby each node is assigned a
distinct weight for each hyperedge it belongs to. However, we only assign nodes a single
weight.

Definition 2 (Weighted Hypergraph). A weighted hypergraph H = (V,E,w, γ) is an
hypergraph with associated node weights γ = {γ(1), γ(2), . . . , γ(n)} and associated hyperedge
weights w = {w(1), w(2), . . . , w(m)}, where γ(i) is the weight of node vi and w(α) is the
weight of hyperedge Eα. Each weight is a positive real number.

Given Definition 2, we note that the hypergraph in Definition 1 can be interpreted as a
weighted hypergraph with all node and hyperedge weights set equal to 1.

In addition to assigning weights to nodes, we can also assign them states.

Definition 3 (States). The state of node vi ∈ V is λi ∈ R. This defines an hypergraph
H = (V,E,w, γ, λ) with associated node states λ = {λ1, λ2, . . . , λn}.

States will become central in Section 5 when we consider reappraisal.
Rather than specifying an hypergraph by listing its nodes and hyperedges, we can

encode it using a matrix.

Definition 4 (Incidence Matrix). An n×m incidence matrix e encodes an hypergraph
H = (V,E,w, γ, λ) with n nodes and m hyperedges. It has entries

eiα =

{
1 if vi ∈ Eα,
0 otherwise.

(1)

This allows us to define the adjacency matrix.

Definition 5 (Adjacency Matrix). The n × n adjacency matrix of an hypergraph H =
(V,E,w, γ, λ) is A = eWe⊤ where W is an m×m diagonal matrix with α-th main-diagonal
entry Wαα = w(α).
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The entry Aij of the adjacency matrix equals the total weight of hyperedges that contain
both nodes vi and vj.

We can define the degree of each node in the hypergraph analogously to the definition
of node degree in a network, namely the sum of weights of edges incident to it.

Definition 6 (Node degree). The degree d(i) of a node vi ∈ V is given by

d(i) =
∑
α

w(α)eiα. (2)

We can also define the degree of each hyperedge.

Definition 7 (Hyperedge degree). The degree δ(α) of an hyperedge Eα ∈ E is given by

δ(α) =
∑
i

γ(i)eiα. (3)

That is, δ(α) is the total weight of nodes contained in hyperedge Eα.
Throughout this dissertation, whenever we say ‘hypergraph’, we mean a simple, con-

nected, weighted hypergraph. An example is shown in Figure 1. We will also assume that
n and m are finite. Furthermore, following notation in [9], node indices will be denoted
by Latin letters, and hyperedge indices by Greek letters (so that unless otherwise stated,
Latin indices run from 1 to n and Greek indices run from 1 to m). With these definitions
now in our toolkit, we can define the hypergraph model we will be exploring during this
dissertation.

Figure 1: An hypergraph H = (V,E,w, γ, λ) with 5 nodes and 3 hyperedges. Nodes
are black dots and hyperedges are coloured. For consistency, all diagrams will use this
hypergraph as an example.
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2.2 Introducing the Thought Hypergraph

The model we define for our thoughts is based on the notion that all thought is combi-
natorial and associative [12]. Combinatorial means that thoughts consist of combinations
of existing concepts, and associative refers to thoughts arising by direct association with
concepts making up currently-active thoughts [12]. So, a concept acts as a stimulus of a
thought it is associated to. In this way, a concept can be interpreted either as an external
stimulus, including a physical or behavioural response, or as an internal stimulus, such as
an emotion, feeling or belief [13]. Rather than specifying the nature of each concept, we
will refer to all simply as ‘concepts’ throughout.

We now state the definition of our model, which is depicted visually in Figure 2.

Definition 8 (Thought Hypergraph (TH)). A thought hypergraph is a (simple, con-
nected, weighted) hypergraph H = (V,E,w, γ, λ), where each node represents a concept and
each hyperedge represents a thought. The thought hypergraph consists of a finite number of
concepts. Each hyperedge Eα ∈ E has weight w(α) = |Eα|, and each node vi ∈ V has state
λi ∈ {0, 1}. We call the state of vi ∈ V maladaptive if λi = 0, and adaptive if λi = 1. The
state of an hyperedge Eα ∈ E is

Λα =

∑
i λiγ(i)eiα
δ(α)

. (4)

We call the state of an hyperedge Eα ∈ E adaptive if Λα = 1, maladaptive if Λα = 0 and
conflicted if Λα ∈ (0, 1). Finally, the thought hypergraph is adaptive if all nodes have state
1, maladaptive if all nodes have state 0, and otherwise conflicted.

By defining thoughts as hyperedges (i.e. as combinations of nodes), this guarantees our
thoughts are combinatorial. The assumption that the number of concepts is finite means
that the thought hypergraph we consider is a sub-hypergraph of a far larger hypergraph
(the entire mind). For the purposes of our model, we assume that the hypergraph is static
(conceptual combinations are pre-existing and ingrained in our minds, and span all possible
relevant thoughts associated to the concepts), since the dissertation concerns dynamics on
hypergraphs, and not dynamics of hypergraphs. Finally, the choice of hyperedge weights
will become clear in the next section, when we consider the dynamics of thoughts.

(a) (b)

Figure 2: An example of a thought hypergraph. (a) A concept and thought labelled. (b)
A thought hypergraph (black) is sub-hypergraph of the rest of the mind (grey).
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The definition of maladaptive and adaptive states allows us to define recovery in terms
of our model.

Definition 9 (Recovery). Recovery is the process of a maladaptive thought hypergraph
becoming adaptive. All concepts vi ∈ V initially have state λi = 0, and recovery has occurred
when all concepts vi ∈ V have state λi = 1.

The dynamical process we use to represent recovery is our focus for the sections that follow.
Our first step, explored in the next section, is to define a process representing thinking.

Remark 1. To ensure connections to both the TH and hypergraph theory are made, we
state definitions using mathematical terms, and follow them with a connection to our model.
To guarantee clarity in our discussion, we have included a table comparing mathematical
and model terminology in the Appendix.
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3 A Train of Thought

Having introduced the TH, we can now begin exploring hypergraphs as a dynamic model
for thought. Based on associativity of thoughts [12], an active concept acts as a stimulus for
the next thought (combination of concepts). The activation of this thought then triggers
another concept to act as a stimulus for the next thought, and so on, creating a ‘train of
thought’ [12]. This process can be described mathematically by defining a random walk on
the TH.

3.1 Node-centric Random Walks

A random walk (RW) on the nodes of a standard network involves a single choice: the
random walker chooses an edge incident to the node it currently occupies, and moves to
the other node contained in that edge. However, when considering RWs on the nodes of an
hypergraph, the random walker faces an additional choice: since each hyperedge contains
at least two nodes, the random walker must choose which node in the selected hyperedge
to move to.

This extra choice has led to a number of varying definitions of RWs on the nodes of
hypergraphs. In the seminal paper by Zhou, Huang and Schölkopf [14], hyperedge choice
is made proportional to hyperedge weight, and node choice uniform across all nodes in a
selected hyperedge. Chitra and Raphael [11] generalised this work by introducing node
choices that are proportional to node degree. It is this generalisation that we focus on.

Definition 10 (Node-centric Random Walk [11]). Let H = (V,E,w, γ, λ) be an hy-
pergraph. At time t, the random walker is at node vt = vi, and will:

1. Select an hyperedge Eα ∈ E containing node vi, chosen with probability w(α)/d(i).

2. Select a node vj ∈ Eα, chosen with probability γ(j)/δ(α).

3. Walk to node vt+1 = vj at time t+ 1.

This is a Markov chain on V with transition probabilities

Tij =
∑
α

w(α)

d(i)

γ(j)

δ(α)
eiαejα, (5)

which can be encoded in an n× n transition matrix T = (Tij).

In the context of the TH, a node-centric random walk is a concept-centric train of
thought, since nodes represent concepts. Thoughts are activated in transitions between
the concepts acting as stimuli. The following definition is equivalent to Definition 10, but
stated in terms of the TH to aid understanding.

Definition 11 (Concept-centric Train of Thought). Let H = (V,E,w, γ, λ) be a TH.
At time t:

1. The current stimulus vt = vi activates one thought Eα ∈ E containing concept vi.
Thought Eα is chosen with probability w(α)/d(i).
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2. Thought Eα triggers a concept vj ∈ Eα to act as the next stimulus, chosen with
probability γ(j)/δ(α).

3. Concept vt+1 = vj acts as the stimulus at time t+ 1.

A diagram of this process is shown in Figure 3. Note that it is possible that vt+1 = vt,
so the RW is lazy [11]. Chitra and Raphael [11] also consider non-lazy RWs, in which the
subsequent node choice must be distinct from the current node, however we choose to use
a lazy process as it better supports the notion of a train of thought: a thought does not
have any memory about which concept activated it.

Figure 3: Node-centric random walk process. Bottom layer: purple node is the current
position of the random walker. Top layer: purple hyperedge is the hyperedge activated
during the transition between nodes. In the context of the TH, the purple node is the
current stimulus, and the purple hyperedge is the thought activated by the stimulus during
the transition.

Although we defined the RW in terms of arbitrary hyperedge weights, recall that in
Definition 8 we chose w(α) = |Eα| for each Eα ∈ E. This choice was made because Carletti
et al. [15] demonstrated that such a choice represents a bias of the random walker to remain
in large hyperedges for longer. This directly reflects the notion that a thought occurs more
often if more stimuli can activate it.

Remark 2. The Markov chain has finite state space since we are assuming n is finite, and
is irreducible since H is connected. Hence, it is positive recurrent. Therefore, its stationary
distribution exists and is unique.

Given Definition 11 and Remark 2, the stationary distribution of the RW is of interest
to us, because it tells us the long-run proportion of time that a certain concept is used to
stimulate a new thought.
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Theorem 3.1 (Node-Centric Random Walk Stationary Distribution [11]). Let
T = (Tij) be the transition matrix of the node-centric random walk on an hypergraph
H = (V,E,w, γ, λ). The stationary probability of node vj ∈ V is

πj =
γ(j)d(j)∑
k γ(k)d(k)

. (6)

Proof. By definition, the stationary probability of node vj ∈ V satisfies

πj =
∑
i

πiTij. (7)

This is satisfied by (6), since substituting (5) and (6) into the right-hand side of (7), and
recalling the definitions of degree, gives

πj =
∑
i

πiTij

=
∑
i

γ(i)d(i)∑
k γ(k)d(k)

∑
α

w(α)

d(i)

γ(j)

δ(α)
eiαejα

=
γ(j)∑

k γ(k)d(k)

∑
α

w(α)

δ(α)
ejα
∑
i

γ(i)eiα

=
γ(j)∑

k γ(k)d(k)

∑
α

w(α)

δ(α)
δ(α)ejα

=
γ(j)∑

k γ(k)d(k)

∑
α

w(α)ejα

=
γ(j)d(j)∑
k γ(k)d(k)

.

By uniqueness of the stationary distribution, the stationary probability of vj ∈ V is πj =
γ(j)d(j)/

∑
k γ(k)d(k), as required.

Hence, the stationary probability of a concept is proportional the product of its weight and
degree. We now introduce a new type of random walk on hypergraphs.

3.2 Edge-centric Random Walks

A consideration of edge-centric random walks on hypergraphs, in which the random
walker moves between hyperedges (rather than nodes), has received a lack of attention in
the literature. However, this alternative type of RW is of interest to us when considering
the TH: an edge-centric RW on a TH focuses on the thoughts rather than the concepts,
enabling us to gain insight into the long-term proportion of time spent thinking a certain
thought. This is in contrast to the node-centric RW, in which the activated thoughts are
hidden in transitions between stimuli.

We adapt Definition 11 to introduce an edge-centric random walk process on an hyper-
graph. Figure 4 demonstrates it visually.
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Definition 12 (Edge-centric Random Walk). Let H = (V,E,w, γ, λ) be an hypergraph.
At time t, the random walker is at hyperedge Et = Eα, and will:

1. Select a node vi ∈ Eα, chosen with probability γ(i)/δ(α).

2. Select an hyperedge Eβ ∈ E containing node vi, chosen with probability w(β)/d(i).

3. Walk to hyperedge Et+1 = Eβ at time t+ 1.

This process is a Markov chain on E with transition probabilities

Tαβ =
∑
i

γ(i)

δ(α)

w(β)

d(i)
eiαeiβ, (8)

which can be encoded in an m×m transition matrix T = (Tαβ).

Analagously to the node-centric process, we can phrase the edge-centric process in terms
of our TH using terms in Table A1 (in the Appendix), and call it a thought-centric train of
thought. Note that this process is again lazy, so that the same thought can occur repeatedly.

Figure 4: Edge-centric random walk process. Top layer: purple hyperedge is the current
position of the random walker. Bottom layer: purple node is the node chosen during the
transition. In the context of the TH, the purple hyperedge is the currently-active thought
and the purple node is the stimulus between thoughts.

Furthermore, we can consider the stationary distribution of this process (which exists
and is unique by Remark 2, as |E| = m is finite).

Theorem 3.2 (Edge-Centric Random Walk Stationary Distribution). Let T =
(Tαβ) be the transition matrix of the edge-centric random walk on an hypergraph H =
(V,E,w, γ, λ). The stationary probability of hyperedge Eβ ∈ E is

πβ =
w(β)δ(β)∑
σ w(σ)δ(σ)

. (9)
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Proof. By definition, the stationary probability of hyperedge Eβ ∈ E satisfies

πβ =
∑
α

παTαβ. (10)

Substituting (8) and (9) into the right-hand side of (10) gives

πβ =
∑
α

παTαβ

=
∑
α

w(α)δ(α)∑
σ w(σ)δ(σ)

∑
i

γ(i)

δ(α)

w(β)

d(i)
eiαeiβ

=
w(β)∑

σ w(σ)δ(σ)

∑
i

γ(i)

d(i)
eiβ
∑
α

w(α)eiα

=
w(β)∑

σ w(σ)δ(σ)

∑
i

γ(i)

d(i)
d(i)eiβ

=
w(β)∑

σ w(σ)δ(σ)

∑
i

γ(i)eiβ

=
w(β)δ(β)∑
σ w(σ)δ(σ)

,

showing that (8) satisfies (10). By uniqueness of the stationary distribution, (9) holds, as
required.

As we now show, the edge-centric RW is consistent with the node-centric RW, in the
sense that the stationary distributions provide the same information: the stationary prob-
ability of an hyperedge is equal to the sum of the stationary probabilities of the nodes that
make it up. Since a node can belong to multiple hyperedges, we must weight the stationary
distribution of a node by a factor proportional to the hyperedge weight. Performing this
calculation for hyperedge Eα ∈ E, we have∑

i

w(α)

d(i)
πieiα =

∑
i

w(α)

d(i)

γ(i)d(i)∑
k γ(k)d(k)

eiα

=
w(α)∑

k γ(k)d(k)

∑
i

γ(i)eiα

=
w(α)δ(α)∑
k γ(k)d(k)

,

(11)

and normalising this gives πα, as required. In the context of the TH, this is good news: it
tells us that both processes defined above provide the same information about the long-term
proportion of time spent thinking a particular thought. More generally, such an interplay
between the processes suggests that the edge-centric random walk has potential to be used
in broader applications of hypergraphs.
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3.3 Projecting the Random Walks

Considering the stationary distributions (6) and (9), we see that they depend only on
the weights and degrees of, respectively, concepts and thoughts. This leads us to question
whether it is possible to define these processes on a standard network in which concepts
or thoughts are the nodes, and the transition probabilities between nodes are defined by
the TH. Doing so would provide a representation of the TH that is amenable to results
extended from network science, whilst still requiring the model to be defined as an hyper-
graph (i.e. in order to obtain correct transition probabilities).

Such a representation can be found by considering ‘projections’ of an hypergraph onto
its nodes or hyperedges, and seeing whether there exists a RW on the projection which is
equivalent to that on the hypergraph (has the same state space and same transition prob-
abilities between states). This was explored by Chitra et al. [11], who were interested in
understanding whether a RW on the nodes of an hypergraph possessed higher-order prop-
erties that prevented it from being equivalent to a RW on a projected network. Although
not our focus here, their work serves as useful for answering our question above.

To distinguish the separate projections, we call the projection onto the nodes a clique
graph, and the projection onto the hyperedges a contracted network. The former is defined
in [11], and the latter is our own definition. However, we note that the general consideration
of a projection of an hypergraph onto its hyperedges is not a new concept (for example,
see [16]).

Definition 13 (Clique Graph [11]). An hypergraph H = (V,E,w, γ, λ) defines a clique
graph GH = (V, E , ω), where V is the node set, E = {{vi, vj} : vi, vj ∈ V and vi, vj ∈
Eα for some Eα ∈ E} is the edge set (including self-loops), and ω = {ω(e) : e ∈ E} is a set
of prescribed weights on the edges e ∈ E .

Definition 14 (Contracted Network). Given an hypergraph H = (V,E,w, γ, λ), the
corresponding contracted network is GH

c = (E, Ê ,Ω), where the node set of GH
c is the set

of hyperedges E of H, the edge set (including self-loops) is Ê =
{
{Eα, Eβ} : Eα, Eβ ∈

E, |Eα ∩ Eβ| ≠ ∅
}
and the edge weights are Ω = {Ω(e) : e ∈ Ê}.

In these definitions, the existence of self-loops reflects the ‘laziness’ of the RWs. Figure 5
shows a visual representation of the projections. In the context of our TH, the clique graph
is a concept network, and the contracted network a thought network.

These definitions lead us to two theorems which answer our question above: there do
exist random walks on the projected networks equivalent to those on the hypergraph. The
first theorem corresponds to Theorem 4 in [11], and the second is our own. The proofs
follow the same structure, so we only prove our theorem here, and refer the reader to
Appendix B of [11] for proof of the first.

Theorem 3.3 (Node Projection [11]). Let H = (V,E,w, γ, λ) be an hypergraph. Then
there exist edge weights ω on the corresponding clique graph GH = (V, E , ω) such that a
random walk on GH is equivalent to the node-centric random walk on H.
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Figure 5: Projections of an hypergraph H down onto its clique graph GH and up onto its
contracted network GH

c .

Theorem 3.4 (Hyperedge Projection). Let H = (V,E,w, γ, λ) be an hypergraph. Then
there exist edge weights Ω on the corresponding contracted network GH

c = (E, Ê ,Ω) such
that a random walk on GH

c is equivalent to the edge-centric random walk on H. Moreover,
the weight of edge {Eα, Eβ} ∈ Ê is παTαβ, where π and T = (Tαβ) are respectively the
stationary distribution and transition matrix of the edge-centric random walk on H.

The proof of Theorem 3.4 requires the following Lemma from [11], for which we recall the
notion of a reversible Markov chain from SB3.1 Applied Probability.1

Lemma 3.5. Let M be an irreducible Markov chain with finite state space E and transition
probabilities Tαβ for Eα, Eβ ∈ E. M is reversible if and only if there exists a weighted,
undirected network G with node set E such that a random walk on G is equivalent to M.

Proof. Let M be a Markov chain satisfying the conditions of the Lemma, and suppose M is
reversible. By irreducibility, M has a unique stationary distribution π, and πα ̸= 0 for any
Eα ∈ E. Let G be a network with nodes E and weight wαβ = παTαβ on each edge {Eα, Eβ}.
Since M is reversible, παTαβ = πβTβα for all Eα, Eβ ∈ E. Therefore, wαβ = wβα for all
Eα, Eβ ∈ E, so the edge weights are well-defined. In a random walk on G, the probability
of going from node Eα to node Eβ in a timestep is

wαβ∑
σ wασ

=
παTαβ∑
σ παTασ

=
Tαβ∑
σ Tασ

= Tαβ, (12)

since T = (Tαβ) is right-stochastic. Hence, the transition probabilities and state space of
the random walk on G are equal to that of M , so equivalence holds. The converse holds
since a random walk on an undirected network is always reversible [17].

1παTαβ = πβTβα ∀Eα, Eβ ∈ E.
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Proof of Theorem 3.4. We first show that an edge-centric random walk onH = (V,E,w, γ, λ)
satisfies the conditions of the Lemma, and then show that it is reversible.

Since H is connected, any random walk on E is irreducible. The state space of the
random walk is finite because the number of edges |E| is finite. By Kolmogorov’s Theorem
[18], reversibility is equivalent to

Tα1α2Tα2α3 · · ·Tαkα1 = Tα1αk
Tαkαk−1

· · ·Tα2α1 (13)

for any set of k edges {Eα1 , . . . , Eαk
}. Recalling that the transition probabilities are

Tαβ =
∑
i

γ(i)

δ(α)

w(β)

d(i)
eiαeiβ =

w(β)

δ(α)

∑
i

γ(i)

d(i)
eiαeiβ, (14)

we have (defining αk+1 = α1)

Tα1α2Tα2α3 · · ·Tαkα1 =

(
w(α2)

δ(α1)

∑
i

γ(i)

d(i)
eiα1eiα2

)
· · ·

(
w(α1)

δ(αk)

∑
i

γ(i)

d(i)
eiαk

eiα1

)

=
k∏

j=1

w(αj+1)

δ(αj)

∑
i

γ(i)

d(i)
eiαj

eiαj+1

=
k∏

j=1

w(αj)

δ(αj+1)

∑
i

γ(i)

d(i)
eiαj+1

eiαj

=

(
w(αk)

δ(α1)

∑
i

γ(i)

d(i)
eiα1eiαk

)
· · ·

(
w(α1)

δ(α2)

∑
i

γ(i)

d(i)
eiα2eiα1

)
= Tα1αk

Tαkαk−1
· · ·Tα2α1.

So by Kolmogorov’s Theorem, an edge-centric random walk on H is reversible.
Hence, by Lemma 3.5, there exists a weighted, undirected network G with with node

set E and well-defined edge weights wαβ = παTαβ such that random walks on G and the
hyperedges of H are equivalent. Finally, note that the equivalence implies that wαβ > 0 if
and only if Tαβ > 0, and so G is the contracted network GH

c , as required.

3.4 Reflection

We have now defined ‘train of thought’ processes on our TH. We showed that the sta-
tionary distributions of the edge-centric and node-centric processes are consistent, demon-
strating that whichever process we use, the long-term proportion of time spent thinking a
particular thought is the same. Furthermore, we showed that both processes are equivalent
to random walks on their respective projected networks. Such an equivalence is valuable,
because it not only makes the RW processes amenable to network-based methods, but it
also enables one to focus on different ‘levels’ of an hypergraph model to suit a particu-
lar interest; this could have wider applications in the study of multi-layer networks. These
multiple levels will become useful in Section 5 when we consider the recovery process. Over-
all, we believe the edge-centric random walk process holds exciting potential for further
research.
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4 Refocusing

In the previous section, we defined train of thought processes, which continued forever
in the TH. However, once a concept is stimulated and a train of thought begins, at some
point the mind refocuses to a thought outside of the TH. Although we don’t need to model
thoughts outside of the TH, we do need to model the transitions of leaving and re-entering
the TH. In this section, we consider these transitions.

4.1 Defining Refocusing

To encorporate refocusing into our RW processes, we take inspiration from the method
of teleportation used in the PageRank algorithm [19]: at each step of the RW, with some
probability η the random walker follows the RW as usual, and with probability 1 − η
the random walker teleports independently of the underlying network structure to another
node, according to a choice given by a probability distribution u = (u1, u2, . . . , un) called
the preference vector. Teleportation reflects the concept of refocusing well: during ‘tele-
portation’, we assume the mind (random walker) has refocused and is wandering around
thoughts outside of the TH (see Figure 6). The node it teleports to corresponds to the
node it re-enters the TH on. Similarly to a thought being hidden between transitions in the
concept-centric train of thought process, refocusing is hidden in a teleportation transition.

We can define teleportation in terms of both the node-centric (Definition 10) and edge-
centric (Definition 12) random walks.

Definition 15 (Node Teleportation Process). Let 1 − η ∈ [0, 1] be the probability
of teleportation, and let u = (u1, . . . , un) be the 1 × n preference vector of nodes of an
hypergraph H = (V,E,w, γ, λ). At time t, the random walker is at node vt = vi, and will:

• with probability η, perform steps 1–3 in the node-centric random walk process to walk
to some node vt+1 = vj at time t+ 1;

• with probability 1− η, walk to some node vt+1 = vj, chosen with probability uj.

This is a Markov chain on V with transition probabilities

T
(η)
ij = ηTij + (1− η)uj, (15)

where Tij is given by (5). The transition probabilities can be encoded in an n × n node
refocusing transition matrix T(η) = ηT+ (1− η)1⊤u, where 1 is a 1× n vector of ones.

Definition 16 (Edge Teleportation Process). Let 1 − η ∈ [0, 1] be the probability of
teleportation, and let u = (u1, . . . , um) be the 1 ×m preference vector of hyperedges of an
hypergraph H = (V,E,w, γ, λ). At time t, the random walker is at hyperedge Et = Eα, and
will:

• with probability η, perform steps 1–3 in the edge-centric random walk process to walk
to some hyperedge Et+1 = Eβ at time t+ 1;

• with probability 1− η, walk to some hyperedge Et+1 = Eβ, chosen with probability uβ.
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This is a Markov chain on E with transition probabilities

T
(η)
αβ = ηTαβ + (1− η)uβ, (16)

where Tαβ is given by (8). The transition probabilities can be encoded in an m×m hyperedge
refocusing transition matrix T(η) = ηT+ (1− η)1⊤u, where 1 is a 1×m vector of ones.

These definitions can be rephrased in terms of the TH by substituting terms, as explained
in Table A1.

Remark 3. The teleportation processes can equally be defined on their respective projected
networks. This is because the preference vectors u are independent of the underlying
structure of H and its projections, and so since the RW transition matrices are equal on
H and the corresponding projection by Theorems 3.3 and 3.4, T(η) = ηT + (1− η)1⊤u is
equal on H and the corresponding projection too.

Note that η = 0 refers to no train of thought inside the TH, so that each time we enter the
TH we refocus outside of it, while η = 1 corresponds to no refocusing. This parameter will
become central to our later discussion of recovery.

Figure 6: Example of a node teleportation process. The random walker leaves the (thought)
hypergraph on the purple node and re-enters on pink node. During the transition, the
random walker is assumed to be walking around nodes external to the (thought) hypergraph
being considered, which is shown in the blue teleport ring.
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4.2 Stationary Distribution with Refocusing

As before, we are interested in the long-term proportion of time spent thinking a partic-
ular thought, that is, the hyperedge stationary distribution. In particular, it is interesting
to understand how this changes as a function of the refocusing parameter η. The follow-
ing Theorem tells us the stationary distribution, and we prove it by expanding on Section
2 in [20]. The proof relies on the definition of strict diagonal dominance and the Levy-
Desplanques theorem, which we first state and prove for completeness.

Definition 17 (Strictly Diagonally Dominant [21]). An m ×m matrix A = (Aij) is
strictly diagonally dominant if

|Aii| >
∑
j ̸=i

|Aij| ∀i ∈ {1, . . . ,m}. (17)

Lemma 4.1 (Levy-Desplanques Theorem [21]). Let A = (Aij) be a strictly diagonally
dominant m×m matrix. Then A is non-singular.

Proof. Suppose thatA is singular. Then there exists a non-zero vector v such thatAv = 0,
so
∑m

j=1Aijvj = 0 for all i ∈ {1, . . . ,m}. Let |vM | = max{|v1|, . . . , |vm|}. This implies
|AMM ||vM | = |AMMvM | = |

∑
j ̸=M AMjvj| ≤

∑
j ̸=M |AMj||vj| ≤ |vM |

∑
j ̸=M |AMj|, where

the first inequality uses the triangle inequality, and the second inequality is by definition of
|vM |. This provides |AMM | ≤

∑
j ̸=M |AMj|, contradicting strict diagonal dominance.

Theorem 4.2. Let u = (u1, . . . , um) be the hyperedge preference vector, and let πβ and T be,
respectively, the stationary probability of hyperedge Eβ ∈ E and the transition matrix of the
edge-centric random walk on H = (V,E,w, γ, λ). Furthermore, let I be the m×m identity

matrix. The stationary probability π
(η)
β of hyperedge Eβ ∈ E under the edge teleportation

process is

π
(η)
β =


uβ if η = 0,

πβ if η = 1,

(1− η)
∑

α uα

[
(I− ηT)−1

]
αβ

if η ∈ (0, 1).

(18)

Proof. Firstly, note that for each η ∈ [0, 1], the stationary distribution π(η) is unique, since
H is connected and hence the random walks are irreducible. The stationary distribution
π(η) satisfies

π(η) = π(η)T(η), (19)

and by definition of T(η) this becomes

π(η) = ηπ(η)T+ (1− η)u, (20)

since π(η)1⊤ = 1.

• For η = 0, (20) becomes π(0) = u. By uniqueness, π(0) = u.

• For η = 1, (20) becomes π(1) = π(1)T, which is satisfied by the stationary distribution
of the edge-centric random walk π. By uniqueness, π(1) = π.
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• For η ∈ (0, 1), rearranging (20) gives

π(η)(I− ηT) = (1− η)u, (21)

We now note that (I−ηT) is strictly diagonally dominant: |(I−ηT)ii| = |1−ηTii| =
1 − ηTii since 0 < ηTii < 1. Furthermore,

∑
j ̸=i |(I − ηT)ij| =

∑
j ̸=i |0 − ηTij| =∑

j ̸=i ηTij = η(1 − Tii), where the third equality holds since the row-sum of T is
1. Since η < 1, we have η(1 − Tii) ≤ 1 − ηTii, and so I − ηT is strictly diagonally
dominant. By Lemma 4.1, (I − ηT)−1 exists, so we can right-multiply (21) by this
inverse to get

π(η) = (1− η)u(I− ηT)−1. (22)

Therefore,

π
(η)
β = (1− η)

∑
α

uα

[
(I− ηT)−1

]
αβ
. (23)

To understand the long-term proportion of time spent thinking a certain thought, we
need to choose a specific form of preference vector. We know a thought is activated by a
stimulated concept, and a concept is chosen with probability proportional to its weight.
Therefore, a thought is more likely to occur if the total weight of its concepts is high
(i.e. if its degree is high). Hence, we choose the preference vector to be proportional to
hyperedge degrees, giving uα = δ(α)/

∑
σ δ(σ) for each Eσ ∈ E. This means the stationary

distribution (18) becomes

π
(η)
β =



δ(β)∑
α δ(α)

if η = 0,

w(β)δ(β)∑
α w(α)δ(α)

if η = 1,

(1− η)
∑

α
δ(α)∑
σ δ(σ)

[
(I− ηT)−1

]
αβ

if η ∈ (0, 1).

(24)

So, unless all hyperedges are the same size, the stationary distribution varies with η. In
terms of thinking, this demonstrates that our ability to refocus affects which thoughts are
more common in the long-run. In particular, when η is close to 1 we rarely refocus, and
in the long-run we are more likely to be thinking of thoughts of large size (i.e. containing
a large number of concepts). Therefore, if one does not refocus often, it becomes easier to
fixate on large thoughts. This will be important in Section 5.

Remark 4. Theorem 4.2 can equivalently be stated for π
(η)
i in terms of the node teleporta-

tion process, with u = (u1, . . . , un) and indices i, j instead of α, β. Moreover, the preference
vector is the vector of node degrees, for the same reason we chose the hyperedge preference
vector.
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4.3 Reflection

Overall, this section saw us introduce the process of ‘refocusing’ via teleportation on
hypergraphs. This work may find broader applications in hypergraph science. For example,
if an hyperedge were to represent a community of nodes, using the hyperedge stationary
distributions we could rank whole communities, rather than just ranking nodes. In the
context of our model, we found that our ability to refocus determines which thoughts
become more common in the long-run, and that infrequent refocusing can lead to fixation.
Next, we introduce reappraisal and the full recovery process.
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5 Recovery

Now that we have seen how to traverse our TH and refocus, we consider reappraisal and
the recovery process. This can be explained as follows [1]: the series of trains of thought
are taking place on our TH, and we have no control over which thoughts emerge into our
conscious awareness. At some point, we may engage in mindful awareness (pay attention to
our thoughts non-judgmentally). By doing so, we may identify an unhelpful or maladaptive
thought. We can then choose to use our executive attention to focus on that thought and
reappraise it by assigning it a more helpful meaning. Having attempted to do so, we want
to refocus our mind to outside of the TH.

We now proceed to define this process in terms of our model.

5.1 Reappraisal

We can introduce reappraisal by defining a process similar to the mathematical notion
of a RW marking process on a graph, in which a random walker ‘marks’ each node vi it
visits with some probability pi until all nodes are marked [22]. The concept of ‘marking’
can be defined in terms of binary node states: a node is marked if its state is set equal to
1, and unmarked if its state is 0. As our random walks are defined on hypergraphs, the
marking probabilities can depend on hyperedges as well as nodes.

Definition 18 (Reappraisal). Suppose that a node-centric random walk is talking place
on an hypergraph H = (V,E,w, γ, λ). Say that at time t, the random walker is at node
vt = vi and has selected hyperedge Eα ∈ E. Then with probability pi,α, called the reap-
praisal probability, the random walker sets λi = 1. Otherwise, the random walker leaves λi

unchanged.

This is a marking process on an hypergraph. In terms of the TH, each concept vi is
reappraised with probability pi,α each time it acts as a stimulus for thought Eα. A simple
choice is to let the reappraisal probabilities pi,α = pi be thought-independent (i.e. not
depend on the stimulated thought Eα ∈ E). However, we can also let the reappraisal
probabilities depend on the process.

Definition 19 (Thought-Dependent Reappraisal Probability). The thought-dependent
reappraisal probability of thought Eα ∈ E stimulated by concept vi ∈ V is

pi,α = Λα, (25)

where we recall that Λα =
∑

i λiγ(i)eiα
δ(α)

.

That is, pi,α is proportional to the total weight of adaptive concepts in Eα. This definition
makes intuitive sense; the reappraisal probability is higher the more adaptive the thought.
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5.2 Recovery Process

Given Definition 18, we are now in a position to define the overall recovery process.

Definition 20 (Recovery Process). Let H = (V,E,w, γ, λ) be a TH, and suppose it is
maladaptive at time t = 0. Let pi,α be the reappraisal probability of vi ∈ Eα, η the refocusing
parameter and u = (u1, . . . , un) the concept preference vector. At time t:

1. Thought: the current stimulus vt = vi activates one thought Eα ∈ E containing
concept vi. Thought Eα is chosen with probability w(α)/d(i).

2. Reappraisal: with probability pi,α the state of vi ∈ Eα is set to be adaptive (λi = 1).

3. Refocusing: with probability 1 − η, one concept vk ∈ V is chosen with probability uk

to be the stimulus at time t+ 1. Otherwise, the train of thought continues inside the
TH: thought Eα triggers a concept vj ∈ Eα, chosen with probability γ(j)/δ(α), to act
as the stimulus at time t+ 1.

The recovery process is complete when H is adaptive.

Therefore, the recovery process is the node teleportation process (Definition 15) with
reappraisal (Definition 18). Note that we have defined the recovery process in terms of the
node-centric random walk, as it is the states of the concepts that are being reappraised.
By doing so, we can observe the recovery process at both the concept and thought level
(i.e. on both projected networks), since the state of a thought is a function of the states of
its concepts. Therefore, despite the recovery process being defined on the concepts, it can
be interpreted as changing our thoughts from maladaptive to adaptive. Figure 7 shows this
visually.

Figure 7: Visual explanation of the recovery process. Top is the contracted network, middle
is the TH and bottom is the clique graph. (Self-loops have been removed for visual clarity.)
Red is maladaptive, orange is conflicted and green is adaptive. The aim is to turn the TH
from red to green. (a) The TH is initially maladaptive. (b) After some time, one concept
has been reappraised. The thought it is contained in is now conflicted. (c) Both concepts
in the left hyperedge have been reappraised and are now adaptive. The left hyperedge is
now adaptive and the middle one conflicted. (d) The recovery process ends when the TH
is adaptive. (See Appendix for a colour blind friendly version.)
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Since the process is ergodic,2 provided all reappraisal probabilities are positive, the
probability of recovery is 1. Therefore, our model portrays the positive message that recov-
ery is possible. However, the nature of the recovery process is affected by the reappraisal
probabilities and the refocusing parameter. We want to see whether our model is consistent
with the behaviour expected from clinical theory [2, 3]: a high reappraisal probability and
frequent refocusing leads to more successful recovery. In the next few subsections, we define
the two quantities which we use to assess this success.

5.3 Recovery Time

The most obvious quantity to assess the recovery process by is the recovery time: the
number of thoughts activated inside the TH during the recovery process before the TH
becomes adaptive. Intuitively, the quicker the recovery, the more successful it is. Since
recovery occurs by reappraisal, which is a marking process, recovery time is synonymous
with marking time. Moreover, since the recovery process is stochastic, we are interested in
the expected recovery time (ERT).

Definition 21 (Expected Marking Time (EMT)). Let T (p) denote the marking time
of a RW marking process on n nodes V = {v1, . . . , vn} with marking probabilities p, and
let π be the stationary distribution of the RW. The EMT is

E(T (p)) =
∑
i

πiEi(T (p)), (26)

where Ei(T (p)) is the EMT for marking processes starting from node vi ∈ V.

In terms of the recovery process, this expression is the ERT. Therefore, we obtain the ERT
by the total law of probability (because the recovery process must begin at some node), and
we assume that the RW has been occurring for a sufficiently long time before the marking
process (i.e. recovery process) begins, so that the probability of starting at node vi ∈ V is
πi. This reflects the existence of maladaptive thoughts long before recovery begins.

Marking times were explored by Banderier and Dobrow [22], as a generalisation of cover
times of RWs graphs (the time it takes for a random walker to visit all nodes in a graph,
maximised over all nodes [23]). Cover times have many practical applications, from biology
to computer science, and have hence received a lot of attention in the mathematical liter-
ature [24]. Despite this, the majority of work has involved finding bounds on the expected
cover time [17], with very few explicit results existing [24]. However, using probability
generating functions allows some progress towards an explicit formula for the EMT (and
hence the ERT) to be made [22, 25].

Since the theory in [22] is based on standard networks, the marking probabilities depend
only on the nodes. Therefore, the formula we give below holds only for thought-independent
reappraisal probabilities (i.e. pi,α = pi for all vi ∈ V ). Nevertheless, it serves useful to un-
derstand the simplest case of our recovery process.

We now introduce the formula for the EMT from [22]. The length of the proof prevents
us from presenting it in its entirety, however in the Appendix we provide a sketch-proof to
give intuition behind the formula and explain crucial steps omitted in [22]. Before stating
the theorem, we introduce the operator LS.

2Irreducible by connectedness of H and aperiodic by RW laziness.
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Definition 22 (Operator LS [22]). Let G = (V,E) be a network with n nodes V =
{v1, . . . , vn}. Let {x1, . . . , xn} be real variables and S ⊆ {1, . . . , n}. Denote the marking
probability of node vi ∈ V by pi, and let qi = 1− pi. For each l ∈ {1, . . . , n}, LS substitutes
xl for ql if l ∈ S, and otherwise substitutes xl for 1.

Remark 5. In the following, we denote the size of a subset S by |S|, and I is the n × n
identity matrix. The network G = (V,E) has n nodes V = {v1, . . . , vn}. The vector
p̃ = (p1, . . . , pn) denotes the thought-independent reappraisal probabilities3 (i.e. marking
probabilities), and T is an n×n RW transition matrix. Furthermore, X = Diag(x1, . . . , xn)
is an n× n diagonal matrix whose entries LS acts on.

Theorem 5.1 (EMT starting from node vi [22]). The expected marking time of G =
(V,E) for a random walk starting at node vi ∈ V is

Ei

(
T (p̃)

)
=

∑
S⊆{1,...,n},

S ̸=∅

(−1)|S|+1LS

( n∑
j=1

xi

[(
I−TX

)−1]
ij

)
(27)

Proof. See Appendix and [22].

This theorem allows us to introduce our own corollary.

Corollary 5.1.1 (EMT). The expected marking time of G = (V,E) is

E
(
T (p̃)

)
=

∑
S⊆{1,...,n},

S ̸=∅

(−1)|S|+1LS

(∑
i

πi

n∑
j=1

xi

[(
I−TX

)−1]
ij

)
(28)

Proof. Substituting (27) into our definition of the EMT (26) yields (28).

Corollary 5.1.1 brings us to the ERT of a TH.

Theorem 5.2 (ERT with thought-independent reappraisal probabilities). Let
H = (V,E,w, γ, λ) be a maladaptive thought network, and let p̃ = (p1, . . . , pn) be thought-
independent reappraisal probabilities. Denote the n × n node refocusing transition matrix
by T(η). Then the expected recovery time of H is

E
(
T (p̃)

)
=

∑
S⊆{1,...,n},

S ̸=∅

(−1)|S|+1LS

(∑
i

πi

n∑
j=1

xi

[(
I−T(η)X

)−1]
ij

)
(29)

Proof. Consider the concept network GH from Definition 13. By Theorem 3.3 the random
walk on GH is equivalent to the node-centric random walk on H, so has the same transition
matrix T. By Remark 3, the random walk on GH with refocusing has transition matrix
T(η) = ηT+ (1− η)1⊤u. Applying Corollary 5.1.1 to GH with T(η) yields (29).

3The tilde is to specify thought-independence.
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5.4 Efficiency

Although the ERT provides a good quantitative measure of recovery, it fails to capture
details about the process. Given that the aim of recovery is to reappraise maladaptive
concepts, time spent stimulating adaptive concepts is in-effect wasting time and energy.
Since recovery already requires a lot of energy [3], this is less than ideal. This suggests
measuring a notion of efficiency.

Definition 23 (Efficiency). The efficiency of the recovery process is

Efficiency = 1− expected time spent stimulating adaptive concepts

expected recovery time
, (30)

where ‘time’ is the number of steps in the random walk.

Higher efficiency means proportionally more time is dedicated to trying to reappraise mal-
adaptive thoughts, rather than fixating on already-reappraised ones; more expended energy
contributes towards recovery.

5.5 Reflection

We have now introduced the full recovery process for our model. We were able to pro-
duce a formula for the ERT for the simplest case of the recovery process, which may find
wider applications in the theoretical study of marking processes on hypergraphs. However,
the more general case of thought-dependent reappraisal probabilities eludes such a formula,
since the thoughts are latent to the concept network. Moreover, (29) provides little insight
into the ERT, since it depends on the specific transition matrix T(η), and an explicit for-
mula requires much unwieldy algebra for even the smallest of hypergraphs. Therefore, we
must resort to numerical simulations to gain insight into the qualitative behaviour of the
ERT and efficiency of our recovery process. This is our focus for the next section.
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6 Numerical Simulations

Having defined our recovery process and two measures to quantify its success, we per-
form numerical simulations. Before we doing so, we must generate hypergraphs on which
to perform our simulations.

6.1 Generating Hypergraphs

Since thought is hard to observe [12] and “language is a system for expressing thought”
[26], cognitive semantic networks, in which nodes represent words and edges represent re-
lationships between them, have been used to explore thinking processes [27]. Analysis of
these networks has suggested they exhibit a power-law degree-distribution (of the form
f(k) ∝ k−κ) [28]; a distribution well-known to be generated in networks via growth and
preferential attachment mechanisms, in which new nodes attach preferentially to nodes
with high degree [29]. In particular, cognitive semantic networks have been suggested to
have power-law exponent κ = 3 [27, 28]. Preferential attachment and power-law behaviour
therefore motivate our mechanism for generating hypergraphs.

A variety of preferential attachment mechanisms have been explored for generating
random hypergraphs [16, 30, 31], and their degree-distributions verified analytically as
power-law. (See Table A3 for an overview.) All existing mechanisms that add hyperedges
at each growth step preferentially choose nodes to include in each newly added hyperedge.
However, we devised an algorithm that chooses an hyperedge preferentially based on hy-
peredge degree, before choosing nodes inside it uniformly at random (see Figure 8). This
ensures the generated hypergraph is simple and connected. Furthermore, we state as an
input the hyperedge degree-distribution (specifically, power-law with exponent κ = 3 to
fit with the cognitive semantic network literature [28]). We explain our algorithm in more
detail in the Appendix.

Figure 8: Preferential hyperedge growth mechanism for generating hypergraphs. Note
that it is called Algorithm 2 because Algorithm 1 calculates the power-law hyperedge size
distribution D = [|E1|, . . . , |Em|], which is the input to this algorithm (see Figure A4).

26



Jessica Toudic

Remark 6. Our algorithm generates hypergraphs in which γ(i) = 1 for all vi ∈ V . So by
construction, δ(α) = |Eα| = w(α) for all Eα ∈ E. Assigning node weights would interfere
with the power-law hyperedge degree-distribution. To avoid this, we only consider γ(i) = 1
for all vi ∈ V.

Remark 7. Figure 9 shows the average of 100 realisations of the node degree-distribution
for hypergraphs with 10, 000 hyperedges on a log-log plot. The straight-line behaviour is
characteristic of a power-law, however is only suggestive of such a node degree-distribution,
and does not constitute a proof [32]. Since this distribution is not the focus of our disserta-
tion, we suffice in concluding that it is heavy-tailed. We also remark that in the semantic
network literature, verification of power-law distributions was based on plots [28], so may
not be entirely reliable [32].

Figure 9: Log-log plot of node degree-distribution of hypergraphs with 10, 000 hyperedges
and hyperedge power-law degree-distribution with exponent κ = 3. Generated using our
preferential hyperedge attachment mechanism and averaged over 100 realisations. Plotted
against a fitted power-law.

With hypergraphs generated, we can progress to our main focus for this section: simulating
the recovery process.

6.2 Simulating the Recovery Process

We begin by verifying that (29) coincides with an average over realisations of the recov-
ery process on random hypergraphs generated using our algorithm. Figure 10 demonstrates
that this is the case.

We now want to understand whether our recovery process emulates the two character-
istic features of successful SDN, which we recall from the introduction: the better you are
able to (1) reappraise maladaptive thoughts and (2) refocus away from such thoughts, the
more successful the recovery process. The former can be explored by varying the marking
probabilities pi,α of nodes, and the latter by varying the refocusing parameter η. Recall
that (29) only holds for thought-independent marking probabilities pi,α = pi, and so for
thought-dependent marking probabilities we must resort to taking ensemble averages.
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Figure 10: Simulation of recovery process on a TH with m = 6 and κ = 3 has ERT
that matches the formula (29) in Theorem 5.2. Here, we chose pi,α = 1 for all vi ∈ V.
The simulation is averaged over 200 realisations of the recovery process starting from each
node.

Remark 8. In this section, we perform simulations on hypergraphs with six hyperedges.
To show the results are not specific to hypergraphs of this size, we include figures for
hypergraphs of various sizes in the Appendix.

6.2.1 Reappraisal

In Figure 11, we plot the ERT for constant reappraisal probabilities (i.e. pi = p ∈ (0, 1]
for all vi ∈ V ). As anticipated, the ERT is a decreasing function of p: as the probability
of reappraisal increases, and so the individual is better at reappraising their thoughts,
recovery is quicker. This fits with our mathematical intuition about marking processes,
since if the probability of marking nodes is higher, we expect all nodes to be marked in a
shorter amount of time. Overall, this suggests our model emulates characteristic 1.

(a) (b)

Figure 11: ERT for constant reappraisal probabilities p ∈ (0, 1] averaged over 200 real-
isations of the recovery process starting from each node, on an hypergraph with m = 6
and κ = 3. (a) Refocusing parameter η = 0. (b) Refocusing parameter η = 1. (Different
refocusing parameters shown to demonstrate that qualitative behaviour is independent of
η.)
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6.2.2 Refocusing

We first use the ERT to evaluate the dependence of recovery on the refocusing param-
eter η. As Figure 12 shows, for thought-independent reappraisal probabilities the ERT
is a monotonic increasing function of η. This suggests that the higher the probability of
refocusing, the quicker the recovery process. However, the thought-dependent case behaves
slightly differently: the ERT is again high for large η but no-longer monotonic for small
η, implying that a balance is required between paying attention to maladaptive thoughts
for long enough to enable recovery, but not too long so as to fixate. Overall, the dramatic
increase for large η but relatively low values for small η implies that more refocusing is far
better than none.

(a) (b)

(c) (d)

Figure 12: Recovery process for an hypergraph with m = 6 and κ = 3, averaged over 200
realisations per starting node. Blue represents thought-independent reappraisal probabil-
ities and pink represents thought-dependent reappraisal probabilities. (a) ERT increases
with refocusing parameter η. (b) ERT is very high for high η, and low for small η. (c)
Efficiency is a decreasing function of η, so the recovery process is more efficient the more
frequently refocusing occurs. (d) Efficiency is again a decreasing function of η. Overall, the
thought-independent case suggests lots of refocusing is optimum for both the ERT and effi-
ciency, whereas the thought-dependent case suggests a slight trade-off is required between
minimising and the ERT and maximising efficiency.
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Considering instead the efficiency, both the thought-independent and thought-dependent
cases suggest that more frequent refocusing increases efficiency (see Figure 12). Hence, if
we evaluate the recovery process based on efficiency, it suggests that our model emulates
the refocusing characteristic of SDN.

6.3 Reflection

Overall, our simulations demonstrate that the speed of recovery increases with reap-
praisal ability, and that efficiency increases with refocusing frequency. Using these as the
criteria for more successful recovery, our simulations exhibit the two characteristics of SDN
we hoped for. However, they don’t provide proof that our model emulates such character-
istics. We discuss this limitation in the next section, where we conclude our dissertation by
reviewing our work, discussing the limitations of our model, and suggesting possible future
directions.
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7 Discussion

In this dissertation, we developed a conceptual model representing the thinking process
behind recovery from mental illness using SDN. Our motivation stemmed from the need
for individuals to have sufficient metacognitive awareness in order to engage successfully in
such a process [2, 4]. Since visual explanations improve conceptual understanding [5, 6], we
wanted to see whether a simple visual dynamical model could emulate key characteristics
of successful SDN: the better able we are to reappraise thoughts and refocus, the less we
get stuck unnecessarily fixating on thoughts during recovery and the quicker the recovery
process overall. By defining a recovery process based on random walks on hypergraphs,
and performing numerical simulations, we provided evidence suggesting our model emu-
lates these characteristics.

Although our numerical simulations showed what we were hoping for, they in no way
constitute a proof that our model definitively exhibits the characteristics we wanted it to
display. The lack of an analytical proof of the qualitative behaviour of recovery is a major
limitation our model, and renders us unable to verify any general features of the dynamical
process we defined. At best, we have shown that the model emulates the desired charac-
teristics for the specific hypergraph configurations we used. However, as explicit results
concerning marking times and cover times for networks are something that have so far
eluded the mathematical community [24, 25], numerical simulations are the best we can do
in this situation.

Furthermore, we have focused on dynamics on hypergraphs, but it would be interesting
for any future models to explore dynamics of hypergraphs. This could, for example, incor-
porate Hebbian mechanisms for the generation of new thoughts and degradation of others,
potentially using our random hypergraph generation algorithm. This would make the model
better reflect true thinking processes; something our model somewhat over-simplifies.

Whilst developing our model, we also contributed to the development of hypergraph
theory. We first introduced a novel dynamical process (edge-centric random walk on an
hypergraph) and found its stationary distribution. Following this, we defined a certain
projection of an hypergraph onto its hyperedges, the contracted network, and proved that
random walks on edges of an hypergraph and its corresponding contracted network are
equivalent. We also introduced a marking process for hypergraphs (although found no
analytical results for it). Finally, we introduced a novel mechanism for generating random
hypergraphs, based on preferential attachment to hyperedges rather than nodes. As it was
not the focus of our dissertation, it would be interesting for future work to analytically
derive the node degree distribution generated from this mechanism, and see whether such
a mechanism has any applicability to the generation of empirical hypergraphs.

Despite its limitations, we hope our work provides some motivation for the creation
of a visual model to help individuals develop an adequate metacognitive awareness in the
context of recovery from mental illness. Having said this, the elusiveness of any model
representing recovery from mental illness in the literature to date may be a reflection of
the perceived utility of such a model in clinical practice. Therefore, we make no claim that
our model is useful, but instead appreciate it as a tool for allowing us the opportunity to
explore dynamics on hypergraphs.
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A Appendix

A.1 Knowledge Toolkit

Figure A1: A networks ‘thinking cap’: you’ll require knowledge of C5.4 Networks and its
prerequisites (including SB3.1 Applied Probability). SC2 Probability and Statistics for
Network Analysis would also be useful.

A.2 Recovery Process Additional Figure

Figure A2: Colour blind friendly version of Figure 7 showing the recovery process. Circles
represent maladaptive concepts, triangles represent conflicted concepts, and rectangles rep-
resent adaptive concepts. Hyperedges with no fill represent maladaptive thoughts, hashed
hyperedges are conflicted thoughts, and grey hyperedges are adaptive thoughts. The aim
is to get from the maladaptive TH (a) to the adaptive TH (d).
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A.3 Terminology

Model Definition Mathematical Definition
Concept Node
Thought Hyperedge
Maladaptive state (concept vi) λi = 0
Adaptive state (concept vi) λi = 1
Maladaptive state (thought Eα) Λα = 0
Conflicted state (thought Eα) Λα ∈ (0, 1)
Adaptive state (thought Eα) Λα = 1
Maladaptive TH λi = 0 for all vi ∈ V.
Adaptive TH λi = 1 for all vi ∈ V.
Conflicted TH Mixture of some λi = 0 and some λi = 1.
Train of thought Random walk on an hypergraph
Concept-centric train of thought Node-centric random walk
Stimulus (concept-centric train of
thought)

Node the random walker is on when choosing an
hyperedge in the node-centric random walk.

Thought-centric train of thought Edge-centric train of thought
Currently-active thought Hyperedge random walker is currently on in edge-

centric random walk.
Stimulus (thought-centric train of
thought)

Node chosen in transition between hyperedges in
edge-centric random walk.

Contracted network Projection of an hypergraph onto its hyperedges,
given by Definition 14.

Refocusing process Teleportation as in PageRank algorithm.
Concept refocusing process Node teleportation process
Thought refocusing process Edge teleportation process
Concept preference vector Preference vector of nodes in node teleportation

process.
Thought preference vector Preference vector of hyperedges in edge teleporta-

tion process.
Reappraisal Marking process on an hypergraph using a node-

centric random walk. A visit to a node may cor-
respond to ‘marking’ the node by setting its state
to 1.

Reappraisal probability Probability a node is marked when the random
walker visits it, denoted by pi,α.

Thought-independent reappraisal
probability

Probability a node is marked when the ran-
dom walker visits it is independent of hyperedges
(pi,α = pi for all vi ∈ V ).

Recovery process Marking process using node-centric random walk
with teleportation.

Table A1: Table comparing model terminology to mathematical terminology.
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A.4 Sketch-Proof of Theorem 5.1

We sketch a proof of Theorem 5.1, illuminating aspects omitted in [22]. The proof
involves four steps, described in Figure A3. Table A2 explains relevant notation.

Notation Meaning
G Network G = (V,E) with n nodes that the marking process occurs on.
pl Probability of marking node vl ∈ V when the random walker visits it.
ql = 1− pl Probability the random walker does not mark node vl on a visit.
1− qrll Probability the random walker marks node vl on a random walk in which

node vl is visited rl times.
(k, vi)-walk Random walk of length k starting at node vi ∈ V.
X An n×n diagonal matrix with i-th main diagonal entry equal to the real

variable xi.
LS Operator defined in Definition 22 that acts on the variables xi for i ∈

{1, . . . , n}.
T (p̃) Marking time (i.e. the first time that all nodes have been marked) for a

random walk with (thought-independent) reappraisal probabilities p̃ =
(p1, . . . , pn).

T The n× n node transition matrix.
I The n× n identity matrix.

F
(k)
i (x1, . . . , xn) Multivariate probability generating function of walks of length k starting

at node vi ∈ V, where xi corresponds to visits to node vi.
L Random variable specifying the length of a random walk on G. That is,

{L = k} is the event that a random walk is of length k.
U =
(U1, . . . , Un)

Vector of random variables, where Ul is the number of times the random
walker visits node vl in a walk.

r = (r1, . . . , rn) Vector specifying visit frequency for each node, so that the event {Ul =
rl} corresponds to rl visits to node vl. Note that ri does not include the
visit to vi at the beginning of the (k, vi)-walk; it only nodes it visits by
walking to them.

P(L = k,U = r) Probability node vl is visited rl times on a walk of length k, for l ∈
{1, . . . , n}. Note that P(L = k,U = r) = 0 unless

∑n
l=1 rl = k.

B Event that a random walk results in all nodes being marked.
Y Random variable with state space N such that the event {Y = k} =

{B,L = k} is the probability that a random walk of length k has marked
all the nodes.

F+(z) Probability generating function of all random walks on the network start-
ing at node vi that mark all nodes.

FT (z) Probability generating function of the marking time. (Usual notation
G(z) for probability generating function not used to avoid confusion with
the network G).

Table A2: Notation required for the proof of Theorem 5.1
.
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Figure A3: Steps making up the proof of Theorem 5.1.

Step 4 follows from Step 3 since E(T (p̃)) = F ′
T (1). We now sketch the other steps.

A.4.1 Step 1

A (k, vi)-walk can be specified by the frequency of visits to each node. Hence, the
(multivariate) pgf of (k, vi)-walks is

F
(k)
i (x1, . . . , xn) =

∑
r

P(L = k,U = r)xix
r1
1 · · ·xrn

n =
∑
r

P(L = k,U = r)xi

n∏
l=1

xrl
l , (31)

where the sum is over all possible walks. This can be written in terms of the transition
matrix: [(TX)k]ij is a sum of monomials xr1

1 · · ·xrn
n , each with coefficient equalling the

probability of walking from vi to vj in k steps, such that node vl is visited rl times, excluding
the start node. Therefore,

F
(k)
i (x1, . . . , xn) =

∑
r

P(L = k,U = r)xi

n∏
l=1

xrl
l =

n∑
j=1

xi[(TX)k]ij. (32)

A.4.2 Step 2

Using the total law of probability,

P(B,L = k) =
∑
r

P(B,L = k,U = r) (33)

=
∑
r

P(B|L = k,U = r)P(L = k,U = r). (34)
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By independence of node marking, the probability of marking all nodes in a (k, vi)-walk
such that each node vl is visited rl times is

(1− qri+1
i )

∏
l ̸=i

(1− qrll ). (35)

So,

P(B|L = k,U = r) = (1− qri+1
i )

∏
l ̸=i

(1− qrll ). (36)

Note that

n∏
l=1

(1− qrll ) =
∑

S⊆{1,...,n}

(−1)|S|
∏
l∈S

qrll (37)

=
∑

S⊆{1,...,n}

(−1)|S|LS

( n∏
l=1

xrl
l

)
, (38)

which allows us to re-write (36) as a sum:

P(B|L = k,U = r) =
∑

S⊆{1,...,n}

(−1)|S|LS

(
xi

n∏
l=1

xrl
l

)
. (39)

Hence,

P(B,L = k) =
∑
r

P(L = k,U = r)
∑

S⊆{1,...,n}

(−1)|S|LS

(
xi

n∏
l=1

xrl
l

)
(40)

=
∑

S⊆{1,...,n}

(−1)|S|LS

(∑
r

P(L = k,U = r)xi

n∏
l=1

xrl
l

)
(41)

=
∑

S⊆{1,...,n}

(−1)|S|LS

( n∑
j=1

xi[(TX)k]ij

)
, (42)

where (42) follows from (41) by Step 1.
Finally,

F+(z) =
∞∑
k=0

zkP(B,L = k) (43)

=
∞∑
k=0

zk
∑

S⊆{1,...,n}

(−1)|S|LS

( n∑
j=1

xi[(TX)k]ij

)
(44)

=
∑

S⊆{1,...,n}

(−1)|S|LS

( n∑
j=1

xi

∞∑
k=0

zk[(TX)k]ij

)
. (45)

Provided (I− zTX)−1 exists, this gives
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F+(z) =
∑

S⊆{1,...,n}

(−1)|S|LS

( n∑
j=1

xi

[
(I− zTX)−1]ij

)
, (46)

which bears close resemblance to the formula being proven.

A.4.3 Step 3

Since the marking time is the first time all nodes have been marked,

P(T (p̃) = k) = P(Y = k)− P(Y = k − 1). (47)

Then the pgf of T (p̃) is4

FT (z) =
∞∑
k=0

zkP(T (p̃) = k) (48)

=
∞∑
k=0

zk
[
P(Y = k)− P(Y = k − 1)

]
(49)

= (1− z)
∞∑
k=0

zkP(Y = k) (50)

= (1− z)F+(z), (51)

where F+(z) =
∑∞

k=0 z
kP(Y = k) because {Y = k} = {B,L = k}.

The remainder of the proof is given in [22].

4Using the convention P(Y = −1) ≡ 0.
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A.5 Mechanisms for Generating Hypergraphs

Authors Growth
Type

Initialisation Growth Step Preferential Choice

1 Wang et
al. [16]

Hyperedge m0 nodes in
1 hyperedge.

m new nodes and 1 exist-
ing node (m fixed) form
new hyperedge.

Existing node cho-
sen with probabil-
ity proportional to
degree.

2 Hu et al.
[31]

Hyperedge m0 nodes in
1 hyperedge.

1 new node and m exist-
ing nodes form new hyper-
edge, with m chosen ac-
cording to some probabil-
ity distribution (e.g. Uni-
form or Poisson).

Existing nodes cho-
sen with probabili-
ties proportional to
degrees.

3 Hu et al.
[31]

Hyperedge m0 nodes in
1 hyperedge.

m new nodes and r exist-
ing nodes form new hyper-
edge. m and r chosen ac-
cording to some (possibly
different) probability dis-
tributions.

Existing nodes cho-
sen with probabili-
ties proportional to
degrees.

4 Liu et al.
[30]

Node L0 nodes, N0

hyperedges.
1 new node vt added to
mt−1 existing hyperedges,
where distribution M =
[m1, . . . ,mL] pre-specified.
L nodes added in total.

New node joins
existing hyper-
edges chosen
with probabilities
proportional to
hyperedge size.

5 Our
mecha-
nism

Hyperedge |E1| nodes
in one hy-
peredge,
E1.

|Et+1| − r new nodes,
and r existing nodes in
hyperedge Eu form new
hyperedge, Et+1. Eu

chosen with probability
proportional to its degree
δ(u), and r uniform on
{1, 2, . . . ,min{|Et+1| −
1, |Eu| − 1}}. Hy-
peredge size distribu-
tion pre-specified as
D = [|E1|, . . . , |Em|], and
t ∈ {1, . . . ,m− 1}.

Existing hyperedge
chosen with prob-
ability proportional
to degree.

Table A3: Table describing preferential growth mechanisms for hypergraphs. All existing
processes that add hyperedges preferentially attach to nodes of high degree. Our mechanism
instead preferentially attaches to hyperedges of high degree. Mechanism 4 differs from the
others by adding nodes instead of hyperedges at each growth step.
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(a)

(b)

(c)

Figure A4: Algorithm for generating power-law hyperedge degree distribution D =
[|E1|, . . . , |Em|]. (a) Table showing algorithm. (Python code in A.7.) (b) Example of
Algorithm 1 for m = 4, κ = 3 (while-loop). Output using for-loop is D = [3, 2, 2, 2]. (c)
Hypergraphs with D = [3, 2, 2, 2]. (Note that ‘degree distribution’ is synonymous with
‘size distribution’ as we are assigning all nodes weight 1, and all hyperedges Eα ∈ E weight
|Eα|.)
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(a)

(b)

Figure A5: Algorithm for generating hypergraph from hyperedge size distribution D =
[|E1|, . . . , |Em|]. (a) Table showing algorithm from Figure 8. (Python code in A.7.) (b)
Example of Algorithm 2 for D = [3, 2, 2, 2]. (1) Initially H contains |E1| = 3 nodes in one
hyperedge, E1. (2) Choose E1 with probability 1. Choose l = 1 (since min{|E1|−1, |Et+1|−
1} = min{2, 1} = 1). Then E2 contains 1 node in E1 and 1 new node. (3) Choose E1 with
probability 3/5 and E2 with probability 2/5. Say E1 is chosen. Then l = 1 (since, again,
min{2, 1} = 1). Then E3 contains 1 node (chosen uniformly) from E1 and 1 new node. (4)
Choose E1 with probability 3/7, E2 with probability 2/7 and E3 with probability 2/7. Say
E1 is chosen. Then E4 contains 1 node in E1 and 1 new node.
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A.6 Additional Figures

(a) (b)

(c) (d)

Figure A6: Recovery process for an hypergraph with m = 2 and κ = 3, averaged over 500
realisations per starting node. The behaviour matches that of an hypergraph with m = 6
and κ = 3. (a) ERT increases with refocusing parameter η for thought-independent reap-
praisal probabilities. (b) ERT for thought-dependent reappraisal probabilities is very high
for high η and low for small η, but not monotonic. (c) Efficiency is a decreasing function of
η for thought-independent reappraisal probabilities. (d) Efficiency is a decreasing function
of η for thought-dependent reappraisal probabilities.
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(a) (b)

(c) (d)

Figure A7: Recovery process for an hypergraph with m = 12 and κ = 3, averaged over 100
realisations per starting node. The behaviour matches that of hypergraphs with m = 6
and m = 2. (a) ERT increases with refocusing parameter η for thought-independent
reappraisal probabilities. (b) ERT for thought-dependent reappraisal probabilities is low
for small η and dramatically increases for large η. (c) Efficiency is a decreasing function of
η for thought-independent reappraisal probabilities. (d) Efficiency is a decreasing function
of η for thought-dependent reappraisal probabilities.
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